
A Dynamic Task Distribution and Engine

Allocation Strategy for Distributed Execution of

Logic Programs

George Xirogiannis� Hamish Taylor

Dept� of Computing � Elec� Engineering
Heriot�Watt University

Edinburgh� EH�� �AS� Scotland� UK
G�Xirogiannis�hw�ac�uk� hamish�cee�hw�ac�uk

Abstract� Distributed execution of logic programs on heterogeneous pro�
cessors requires e�cient task distribution and engine synchronization to
exploit the potential for performance� This paper presents a task�driven
scheduling technique to distribute tasks to engines e�ectively� It consists
of a dynamic hierarchy of distributed scheduling components able to adapt
to program characteristics and the platform con	guration and to control
the considerable communication costs while exploiting good degrees of
parallelism� It also incorporates an abort � failure mechanism to reduce
speculative work and keep engines as busy as possible� Several experimen�
tal results illustrate the performance of the model�

� Introduction

Logic Programming languages like Prolog support a form of programming where
one declares the logic of the problem and the implementation provides the nec�
essary control for e�cient execution� Logic programs can take advantage of re�
cent parallel and distributed architectures by exploiting parallelism mainly in the
forms of divide�and�conquer and speculative execution� The distributed execution
of logic programs on heterogeneous processors such as a LAN of workstations may
create parallel tasks that need to be assigned to remote processors at run�time�
A traditional task scheduler ���� relies heavily on shared resources to perform its
functions� But performance will not increase proportionally if the scheduler oper�
ates on resources shared over a LAN of distributed workstations with considerable
communication costs� Such cases require techniques that are better adapted to the
nature of distributed computing�

This paper presents a scheme for e	ectively distributing tasks to engines on a
process�based parallel logic programming system running in a distributed man�
ner on the nodes of a virtual multiprocessor� The Prolog Area Network system
��
� runs on a LAN of workstations with each Prolog engine running on a di	er�
ent workstation� Engines employ the services of PVM to communicate with each
other either synchronously or asynchronously using extra message passing primi�
tives added to SICStus Prolog� PAN is able to exploit various forms of parallelism

�AND� OR� combinations�� Some of its particular merits are its robustness� ease
of use and its ability to exploit highly available hardware� But the communica�
tion overheads of the distributed platform are signicant dictating that any task
distribution mechanism should add proportionally little execution overhead�

The following sections analyze the design choices of this model further� Section
� brie�y discusses other scheduling models and indicates existing pitfalls� Section
� discusses the scheduling scheme used in PAN� presents the scheduling mecha�
nism and analyzes its characteristics� Section � discusses the advantages of the
proposed model in comparison to other techniques and nally section
 presents
some experimental results that illustrate the performance of the model�

� Relevant Research

At the abstract level we can classify scheduling methods into two categories�
Engines look for tasks �engine driven scheduling� or tasks look for engines �task
driven scheduling�� The rst choice has been adopted by the scheduler used in
Andorra�I ���� This model consists of a top scheduler and two sub�schedulers
each responsible for AND�parallel and OR�parallel execution respectively� The
schedulers partition the engines into �exible teams to distribute tasks e	ectively�
However its estimation of the load of a task is crude because it depends only on
its complexity� Complex tasks do not always generate many parallel sub�tasks�
Engine�driven scheduling can not always relate e�ciently the actual task load
with the composition of each team imposing run�time task and engine migra�
tion overheads� A unied top scheduler for all forms of parallelism could improve
performance further by reducing certain synchronization overheads and the com�
plexity of interfacing between the scheduler and the engines� While the bounded
depth�rst distribution strategy used by Andorra�I may relate closely to the ac�
tual Prolog selection strategy it does not always distribute tasks e	ectively to
engines� Communication costs are not properly quantied because this scheduler
was designed for shared�memory multiprocessors with fast communication� If the
same approach was used by PAN�s scheduler it might often result in a slow�down�
A similar engine�driven approach is used by ��Prolog �����

Engine�driven approaches are also used by MUSE ���� Aurora ����� and the Bris�
tol Scheduler ���� These systems mainly address the problem of e�cient scheduling
of OR�parallel tasks controlling speculative OR�work� A drawback of such engine�
driven schedulers with this approach is that an idle worker must make a global
search for new work� which is a major and time consuming task switch and im�
poses real overheads� Most task switches involve a global search for new work
which signicantly a	ects performance� In MUSE when a worker is idle� its next
piece of work will be taken from the deepest �i�e� youngest� node on the richest
branch� The measure of richness used is the number of unshared �or private� alter�
natives on the branch� A disadvantage is that the shared �or public� region of the
tree is much larger and the overall computation is slower since backtracking over
public nodes is more expensive than backtracking over private nodes despite the

reduction to the number of major task switches� Such scheduling strategies share
common characteristics that may a	ect performance� A considerable number of
parallel tasks are identied at run�time� while PAN�s approach detects parallelism
mainly at compile time� They are designed for platforms with low communication
costs and may fail to quantify much of the run�time overheads of distributed het�
erogeneous platforms properly that degrade performance� The task switches and
the search for new work depend proportionally on the communication overheads
among engines�

The signicant costs of inter�engine communications in distributed platforms
have been considered in the scheduling techniques used in OPERA ��� and PloSys
���� which exploit OR�parallelism� The scheduling is performed by a hierarchy of
specialized schedulers operating in parallel to the workers using an approximate
representation of the state of the system� while the multisequential computa�
tional model of OPERA does not create more parallelism than required by the
available resources� To improve its performance OPERA signicantly re�engineers
the WAM code to implement the scheduling algorithms e�ciently� This repre�
sents a departure from the use of mainstream Prolog technology on process�based
distributed platforms and makes the approach liable to being marginalised as
mainstream technology evolves� Similar multi�sequential models have also been
adopted by more recent distributed systems like PDP ��� which also implements
an extension of the WAM� The current implementation of PDP only uses one
scheduler to support the number of available engines� This results in a centralized
scheduling scheme that may create bottleneck situations in distributed platforms
like PAN with slow communication� The conguration of the team of engines lacks
�exibility and does not change dynamically during program execution to adapt
to any changes in the distributed platform�

� Design Choices in PAN

The current implementation of PAN exploits OR�parallelism� independent AND�
parallelism and combinations ����� A suitable granularity control mechanism ����
has been incorporated in PAN� while a second mechanism estimates at compile�
time the relative di�culty of a task� The di�culty of a task in this case does
not only depend on its complexity ���� but also on the number of parallel sub�
tasks it may generate� Complex tasks may not generate many parallel sub�tasks
and vice versa� The scheduling approach of this research is di	erent in many
ways from all methods mentioned� It adopts a dynamic task�driven strategy by
trying to reduce the run�time overheads of making distribution decisions that
depend on the communication costs while the engine re�allocation and task re�
distribution schemes keep engines busy at run�time� Task�driven scheduling is
dictated by the fact that compile�time analysis has already detected parallel tasks�
This considerably reduces the overheads of searching for parallel tasks at run�time
and complies with the design choices of platforms like PAN�

Scheduling analysis in PAN uses a Farmer�Worker model for engine distribution
which generates goal driven �master�slaves� relations among engines and relates

closely to SLD resolution� As the goals change� these relations should adjust to the
program requirements dynamically� A dynamic hierarchy of goals and sub�goals
is generated which corresponds to a hierarchy of farmers and workers� Farmers do
not interfere with the workers �and their tasks� of other farmers at the same or
di	erent level of the hierarchy� The basic mechanism of the proposed scheduling
algorithm is best��rst task distribution in the sense that the more di�cult tasks
get to use more engines rst� The farmer�worker hierarchy is particularly suitable
for distributed systems in contrast to techniques presented in section �� It does
not have a central scheduling unit but each node in the hierarchy corresponds to
a distributed component� Each such component consists of a distributed sched�
uler� its workers and a local engine pool� Distributed components communicate
infrequently� they perform only the necessary communication �detect failure for
instance�� OR�parallelism in PAN is explored in an AND�parallel manner� The
algorithm presented in ���� has been modied to operate e	ectively under PAN�
Therefore PAN does not require separate schedulers to distribute tasks to engines�
while the proper management of speculative OR�work is handled by the compile�
time analyzer ���� reducing certain run�time overheads �like task switches� im�
posed by models like MUSE and Aurora�

��� Task Distribution and Engine Re�Allocation

When the program is actually executed there is an initial distribution �deter�
mined at compile�time� of tasks to engines which corresponds to an initial hierar�
chy �conguration� of farmers and workers� Di�cult tasks get more engines� The
reader is referred to ���� for further discussion� However� it remains possible for
an engine to process more than one parallel tasks while the number of engines is
less than the number of parallel tasks� In this case tasks have to be re�distributed
and engines re�allocated� The run�time scheduler for farmers and workers is pre�
sented in the abstract algorithms of gures � and �� Engine allocation is dynamic
in the sense that each farmer may have a di	erent number of workers during pro�
gram execution or when the program and the initial goal change to adjust to the
distribution of tasks� The implementation can determine a maximum number of
workers a farmer can have to avoid bottleneck situations� Experimental results
suggest that a farmer should not have more than � workers in PAN when running
the programs presented in section
�

A farmer can be viewed as a worker for a farmer at a higher level� A farmer
communicates only with its workers by sending engines and tasks �gure �� lines
�� and receiving results �gure � lines � and �� from them or with its parent�farmer
�gure � line ��
 and ��� If the farmer detects failure� �gure � lines �� � and �� it
initiates the abort and failure mechanism �presented in following sections�� The
farmers sort any requests for more engines from their workers �gure � line ��
in a best�rst manner re�distributing any available engines �gure � line ���� The
��exible� order in which the farmer processes tasks locally �gure � line �� is also
determined by the implementation of the algorithm�

farmer(Tasks, Workers, Parent_Farmer, Pool, Waiting_List, Result)

if number_of(Tasks)-1 > number_of(Workers) then 1
ask(Parent_Farmer, number_of(Tasks)-number_of(Workers)-1)

process_locally(task, ResultA) task∈ Tasks 2
if ResultA≠fail then 3

Result ← Result∪ {ResultA}
Tasks ← Tasks - {task}

else 4
failure_mechanism

if message_from(Parent_Farmer)=Engines then 5
Pool ← Pool∪ Engines
Workers ← Workers∪ Engines

if message_from(Parent_Farmer)=abort then abort_mechanism 6
if message_from(Worker)=(idle, ResultB, Engines) then 7

Result ← Result∪ ResultB
Pool ← Pool∪ {Worker}∪ Engines

if message_from(Worker)=fail then failure_mechanism 8
if message_from(Worker)=request then 9

Temp_List ← Waiting_List∪ {Worker}
sort(Temp_List, Sorted_List)
wait_until Pool≠{} 10
repeat

distribute(Pool, Sorted_List)
until Sorted_List={} OR Pool={}
Waiting_List ← Sorted_List

if number_of(Tasks)=0 then 11
wait_until state_of(Workers)=idle
send_to((idle, Result, Workers), Parent_Farmer)

if number_of(Tasks)>1 then 12
if state_of(Workers)=idle then 13

repeat
send_to(task, engine) task∈ Tasks, engine∈ Pool
Tasks ← Tasks - {task}
Pool ← Pool - {engine}

until number_of(Tasks)=1 OR Pool={}
farmer(Tasks, Workers, Parent-Farmer, Pool, Waiting_List, Result) 14

Fig� � Farmer Execution Protocol

Best�rst task distribution generates a distributed hierarchy of parallel tasks as
well containing sorted potential parallel tasks� Local task processing and message
handling is performed in a concurrent manner �using asynchronous communica�
tion among engines� to limit any response delays� Workers communicate only with
their farmer to receive tasks and engines �gure � lines �� ��� return the results
�gure � line �� and send time�stamped requests to their farmer �gure � line ���
If a worker receives an engine from the farmer it becomes a farmer itself �gure
� line ��� otherwise it processes all tasks locally and stays in worker mode �gure
� line ��� If a worker detects failure� it initiates the abort � failure mechanism
�gure � lines ��
�� Best�rst scheduling can be slightly relaxed and transformed
to breadth�rst distribution in order to keep idle engines busy and improve perfor�
mance� The distribute function presented in gure � allocates tasks to the engines
in a descending order of the processing capabilities of the engines residing in the
pool� As a result the work load tends to be more balanced making the proposed
algorithm more attractive�

worker(Tasks, Farmer, Results)

if number_of(Tasks) > 1 then ask(Farmer, number_of(Tasks)-1) 1
process_locally(task, ResultA) task∈ Tasks 2
if ResultA≠fail then 3

Result ← Result∪ {ResultA}
Tasks ← Tasks - {task}

else 4
send_to(fail, Farmer)
failure_mechanism

if message_from(Farmer)=abort then abort_mechanism 5
if message_from(Farmer)=NewTasks then 6

worker(NewTasks, Farmer, NewResult)
if message_from(Farmer)=Engines then 7

farmer(Tasks, Engines, Farmer, Engines, {}, ResultB)
Result ← Result∪ ResultB

if Tasks≠{} then worker(Tasks, Farmer, Results) 8
if Tasks={} then send_to((idle, Result, {}), Farmer) 9

distribute(Pool, Waiting-List)

W ← head(Waiting_List), Engines⊆ Pool
send_to(W, Engines)
Waiting-List ← tail(Waiting_List)
Pool ← Pool - Engines

Fig� � Worker Execution Protocol

��� Abort � Failure Mechanisms

To make the system faster and closer to standard Prolog execution the farmer�
worker protocol has been given an Abort Process mechanism� This mechanism can
be e	ective at controlling speculative parallelism�

�� All workers often check for any messages from their farmer�
�� When a farmer receives a failmessage from a worker it sends an abortmessage

to other attached workers and stops local task processing�
�� When a worker receives an abort message� it aborts any processing� noties

the farmer that it has aborted all processes and returns to the engine pool�
�� The farmer waits until it receives the aborted message from all its workers�
�� Then the farmer �and any associated goal� fails�

The procedure is applied recursively to sub�farmers� An abort message is dis�
tributed to engines in a top�down manner but engines return the aborted message
and return to the pool in a bottom�up manner� We could speed up the whole
aborting mechanism if we let a sub�farmer send a fail message to its farmer ear�
lier than the actual aborted message� As a result the workers would abort almost
in parallel with the other workers� The farmer aborts �and then fails� only if it
receives the aborted message from every attached sub�farmer and worker to guar�
antee safe process abortion in the sense that all workers actually stay idle in the

pool having stopped all computations and communication� The proposed mech�
anism is particularly suitable for distributed heterogeneous platforms because it
quanties e	ectively the communication costs and initiates useful operations to
be performed by the engines in a concurrent manner while time consuming inter�
engine communication takes place�

� Comparisons

This farmer�worker model of dynamic best�rst engine re�allocation and task
re�distribution is a new scheduling scheme for distributed execution of Prolog�
It aims to improve performance by reducing the complexity of interfacing and
synchronizing among the scheduler and a large number of engines� and keep com�
munication overheads low� Its philosophy is di	erent to allow it to perform bet�
ter on distributed platforms like PAN in comparison to models like ����� ��� �� ��
�� which are designed for shared�memory multiprocessors� It is task�driven and
distribution�oriented which conforms with the design choices of process�based het�
erogeneous platforms� There are several distributed and de�centralized scheduling
components to make the model more scalable in contrast to the PDP and reduce
inter�engine communication� The farmers spend time scheduling for a small num�
ber of workers� therefore the e�ciency is improved and bottleneck situations are
minimized� while reasonable control of task and engine migration is achieved at
little extra cost� The maintenance of a distributed pool does not consume much of
the engine resources and the engines in the pool are quickly made available to act
as workers� The run�time engine distribution is dynamic and may easily adjust to
di	erent kinds of tasks which make it more �exible than other scheduling models
that partition engines into xed numbers� The hierarchy changes dynamically�
workers become farmers on demand to process parallel tasks better� The scheme
provides fair engine distribution� A �best�rst� scheduling policy has the ability
to process di�cult tasks using suitable system resources providing a good degree
of the work load balancing� Other scheduling policies may not always guaran�
tee fair distribution of the engines� The hierarchy of parallel tasks reduces task
switches while preserving �to some extent� the usual Prolog execution strategy
and includes some of the attractive characteristics of MUSE at little extra cost
while the engines are informed of possible failure e	ectively� The scheduling con�
trol is done at the Prolog level and its implementation does not re�engineer the
WAM �in contrast to PDP and OPERA� which complies with the design choices
of PAN and adds �exibility as mainstream technology evolves and improves the
system�s portability and maintainability�

The model imposes some overheads which relate mainly to the frequency of
the communication between a farmer and its workers and depend mainly on the
characteristics of the platform� The actual frequency is left to an implementation�
PAN follows PMS�Prolog ���� reasons in not supporting backtracking in commu�
nication� This scheduling scheme does not support distributed backtracking either
in contrast to platforms like Delta�Prolog ��� and CS�Prolog ����

� Performance

PAN provides a suitable platform to determine if the proposed controls adapt
well to the changing needs of a heterogeneous multiprocessor� Large input sizes
have been used to provide long running non�trivial problems� All programs are
listed in ����� Direct comparison of PAN with parallel Prologs on shared�memory
multiprocessors are not always reasonable� they usually perform better than dis�
tributed platforms as argued in ���� and �
�� It isn�t always feasible to compare
the performance of distributed platforms either because they have di	erent hard�
ware congurations making it di�cult to establish a general and fair comparison
metric� The benchmarks were run under PAN using SICStus Prolog ��
 and PVM
������ on a variety of SUN� DEC and IRIX Unix workstations� The numbers in
tables represent the relative performance improvement RPI due to parallel exe�
cution in comparison to sequential execution� RPI is calculated using the formula

RPI �
SE

PE
where SE is the sequential execution time �in seconds� and PE the par�

allel execution time �in seconds�� The average number of the best three runs is
used� To provide a fair comparison metric of SE for this heterogeneous platform
each goal is run on all engines participating in a given PAN session� The average
of the best three runs is chosen to represent the execution time SEi of an engine
i� Then the overall sequential execution SE is calculated as the average value of
all SEi�

��� AND�parallel Execution

To illustrate the performance of the model for AND�parallelism the QuickSort
program� the MergeSort program� the Big Integer Matrix Multiplication program�
and the Perfect Numbers program were run under PAN� PAN can process tasks
at a certain rate due to the large communication costs� If a program produces
AND�tasks faster than PAN can consume them then the proposed model in�
curs extra run�time overheads because it schedules potential parallel tasks which
are processed locally instead� The Matrix Multiplication program generates four
medium�grained parallel tasks on each recursion� but the rate of generation is not
reasonably close to the rate PAN can process them� Such medium�grained pro�
grams perform better on shared�memory multiprocessors� In contrast� the rate
that the QuickSort and MergeSort programs generate coarse�grained parallel tasks
is reasonably close to the rate that PAN can e	ectively process them� The Perfect
Numbers provide the best improvement� indicating that for non�trivial and coarse�
grained applications this model distributes tasks e	ectively to engines while con�
trolling the communication overheads and exploiting good degrees of parallelism�

QSort List Input Size
��� ���� ���� 	���

� Eng� ����� ����� ����� �����
� Eng� ����� ����� ����� �����
�� Eng� ����� ����� �����
����
�� Eng� ����� �����
��
�
����

MSort List Input Size
��� ���� ���� 	���

� Eng� ��
�� ����� ����� ��
��
� Eng� ����� ����� ����� �����
�� Eng� ��
�� ����� ����� ��
�

�� Eng� ����� ����� �����
����

Matrix NxN Matrix Input Size
	�
� ��

� Eng� ����� ����� ���
�
� Eng� ����� ����� �����
�� Eng� ���
� ����� �����
�� Eng� ����� ����� �����

Perfects Integer Input Size
��� 	�� ���

� Eng� ���
� ����
 �����
� Eng� ����� ����� �����
�� Eng� ���
� ����� �����

�� Eng� ���
� ���
�� ������

It is encouraging to see that performance improves as the size of tasks and the
number of engines increases indicating that the scheduling scheme can partition
e	ectively the work load and can also adapt to the changing conguration of the
platform� ��Prolog provides a speed�up of ��� for QuickSort�����	 running on ��
nodes of a shared�memory multiprocessor� The AND�OR�parallel distributed ex�
ecutor ���� improves the performance of QuickSort�����	 by ��� on �� processors
and PDP improves the performance of QuickSort�
��	 ��� times running on �

processors� ��Prolog provides a linear speed up of �� for Matrix���	 running on
�� processors� but distributed platforms like PDP provide a speed up of ���
 for
Matrix�
�	 on �
 processors� Finally PDP provides a speed up of ��� for Merge�
Sort����	 on �� processors�

��� OR�parallel Execution

Analysis gets more complicated when it comes to OR�parallel execution� Pro�
grams like Permutations or naive N�Queens that generate ne�grained parallelism
are not expected to perform that well under platforms with considerable commu�
nication costs as argued in ����
�� Preliminary results showed that PAN is not
an exception� Alternative benchmarks can be used to illustrate the performance
of distributed platforms� The OR�Tree and Deep Fail programs are variations of
benchmarks used in the performance analysis of distributed systems in ����� When
OR�tasks fail� the OR�interpreter switches to other unexplored branches of the
execution tree� These failure�driven task switches are non�trivial and time con�
suming operations� However the tables indicate that PAN copes adequately�

OR�Tree Integer Input Size
���� 	��� ���� ����

� Eng� ����� ����� ����� �����
� Eng� ��
��
��
� ����� �����
�� Eng� ����� ���
� ������ ������
�� Eng� ��
�� ����� ������ ������

Deep Fail Integer Input Size
���� 	��� ���� ����

� Eng� ����� ����� ����� ����

� Eng� ����
 ����� ����

�
��
�� Eng� �����
��
� ����� �����
�� Eng� ���
� ����� ����� �����

��� AND�OR�parallel Execution

Implementation schemes combining AND and OR parallelism typically pay a
penalty in the form of a higher control overhead� The following table contains
the performance numbers of the synthetic benchmarks used in the performance
analysis of PDP� They generate AND�under�OR and OR�under�AND parallelism
respectively� PAN performs better exploiting the AND�under�OR parallelism of

the synthetic�� benchmark because it requires fewer task switches between the OR�
interpreter and the Prolog engine in comparison to OR�under�AND parallelism
generated by the synthetic��� This indicates that PAN favours the use of the OR�
interpreter at the top levels of the execution tree while the tasks in lower levels
can be processed either sequentially or in AND�parallel�

AND�OR�parallelism Synthetic�� Synthetic��

� Eng� ��
�� �����
� Eng� ��
�� �����
�� Eng� ����� ����

�� Eng� ����� �����

For the synthetic�� benchmark PDP provides a speed up of up to ��
 and for the
synthetic�� benchmark a speed up of up to ���� The latter benchmark performs
better when run under the PDP system because OR�parallel execution is realized
by extending the WAM which imposes no task switches between the Prolog en�
gine and the OR�mechanism which is the case in PAN� But PAN also performs
reasonably well using mainstream Prolog technology�

� Summary � Future Work

A scheme for scheduling the execution of parallel tasks on a process�based het�
erogeneous distributed multiprocessor has been presented� The model uses dis�
tributed scheduling components that communicate infrequently and adopts a dy�
namic task�driven approach to adapt to the changing nature of such platforms�
Each component contains a farmer engine responsible for the distribution of par�
allel tasks to a number of workers and the maintenance of a distributed pool� An
abort � failure distributed mechanism has also been incorporated into the model
to reduce the speculative work� Preliminary results indicate that the proposed
techniques can facilitate the execution of distributed tasks e�ciently and improve
the performance of programs� These gures indicate that PAN performs bet�
ter running time consuming and non�trivial applications rather than ne�grained
parallel tasks� Further research will focus on experimenting with a wider range
of applications to improve the design and the implementation of the proposed
scheduling model and determine a wider of applications that can benet from a
distributed platform like PAN�

References

�� K�A�M Ali and R� Karlsson� Scheduling OR�parallelism in MUSE� In K� Furukawa�
editor� �th International Conference on Logic Programming� pages
��
��� Paris�
June �����

�� L� Araujo and J�J� Ruz� A parallel Prolog system for distributed memory� Interna�
tional Journal of Logic Programming� ����������� October �����

�� A� Beaumont� S�M� Raman� and P� Szeredi� Flexible scheduling of OR�parallelism in
Aurora� The Bristol scheduler� Technical report� Department of Computer Science�
University of Bristol� October �����

�� J� Briat� M� Favre� C� Geyer� and J�C� de Kergommeaux� OPERA� Or�parallel
Prolog system on Supernode� In P� Kacsuk and M�J� Wise� editors� Implementations
of Distributed Prolog� pages ����� John Wiley�Chichester� �����

�� G�F� Coulouris and J� Dollimore� Distributed Systems� concepts and design� �nd

edition� Addison Wesley� �����
�� J�C� Cunha� P�D� Medeiros� M�B� Carvalhosa� and L�M� Pereira� Delta�Prolog�

A distributed logic programming language and its implementation on distributed
memory multiprocessors� In P� Kacsuk and M�J� Wise� editors� Implementations of
Distributed Prolog� pages ������� John Wiley�Chichester� �����

�� I� de Castro Dutra� A �exible scheduler in the AndorraI system� In Anthony Beau�
mont and Gopal Gupta� editors� Proceedings of ICLP ���� Pre�Conference workshop

on Parallel Execution of Logic Programs� pages ��
�� Paris� June �����

� S�K� Debray� P�L� Garcia� M�V� Hermenegildo� and N�W� Lin� Estimating the compu�

tational cost of logic programs� In B�L� Charlier� editor� Static Analysis Symposium
���	� pages ������� Namur� Belgium� Sept �����

�� I� Futo� The real time extension of CS�Prolog professional� In J� Barklund� B� Ja�
yaraman� and J� Tanaka� editors� ICLP��	 � Workshop on Parallel and Data Parallel

Execution of Logic Programs� Santa Margherita Ligure� June �����
��� M�V� Hermenegildo and K�J� Greene� The ��Prolog system� Exploiting independent

AND�parallelism� New Generation Computing� �������������� �����
��� P� Kacsuk and M�J� Wise� Implementations of Distributed Prolog� John Wi�

ley�Chichester� �����
��� E� Lusk� D�H�D� Warren� and S� Haridi� The Aurora OR�parallel system� New

Generation Computing� �������������� �����
��� E� Morel� J� Briat� J�C� de Kergommeaux� and C� Geyer� Side�e�ects in PloSys Or�

parallel Prolog on distributed memory machines� In M�J� Maher� editor� ICSLP��
�
Compulog Net Meeting on Parallelism and Implementation Issues� Bonn� September
�����

��� E� Shapiro� An OR�parallel algorithm for Prolog and its FCP implementation� In
J�L� Lassez� editor� Proceedings of Forth International Conference on Logic Program�

ming� pages ������� Melbourne� May ��
��
��� H� Taylor� Assembling a resolution multiprocessor from interface� programming and

distributed processing components� Computer Languages� ���������
����� �����
��� J� Turek� K� Pattipati� P� S� Yu� and J� Wolf� Scheduling parallelizable tasks� Putting

it all on the shelf� In ACM SIGMETRICS and PERFORMANCE International

Conference on Measurement and Modeling of Computer Systems� pages �������
Rhode Island� USA� June �����

��� A� Verden and H� Glaser� An AND�OR�parallel distributed Prolog executor� In
P� Kacsuk and M�J� Wise� editors� Implementations of Distributed Prolog� pages
������� John Wiley�Chichester� �����

�
� M�J� Wise� Experience with PMS�Prolog� A distributed� coarse�grain�parallel Prolog
with processes� modules and streams� Software Practice and Experience� ���������
���� �����

��� G� Xirogiannis� Compile�time analysis of freeness and side�e�ects for distributed
execution of Prolog programs� In T� Sellis and G� Pagkalos� editors�
th Hellenic

Conference on Informatics� pages ������� Athens� December �����
��� G� Xirogiannis� Execution of Prolog by Transformations on Distributed Memory

Multi�Processors� PhD thesis� Dep� of Computing � Elec� Engineering� Heriot�Watt
University� Edinburgh� Scotland� ���
�

��� G� Xirogiannis� Granularity Control for Distributed Execution of Logic Programs�
In ��th International Conference on Distributed Computing Systems to appear� Am�
sterdam� May ���
�

